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Mission Statement of CBD at NJIT

• Synergize the strong expertise in various disciplines across the 
NJIT campus

• Build a unified big data platform that embodies a rich set of 
big data enabling technologies and services with optimized 
performance to facilitate research collaboration and scientific 
discovery

• Investigate, develop, and apply cutting-edge technologies to 
address unprecedented challenges in big data with high 
Volume, high Velocity, high Variety, and high Veracity,

in order to create high VALUE!



A Three-layer Structure of the CBD 
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Big Data 
Applications

x Raw data (experimental, simulation, 
observational)

x Metadata, markup data
x Analysis results (intermediate, final)
x Models, views, tables, forms, 

animations, etc.
x Workflow templates, provenance data

x Goals: Share data and analysis 
results for community building

x Tasks: Standardize, categorize and 
benchmark datasets

x Goals: Provide generic and special 
big-data enabling solutions

x Tasks: Investigate, design, develop, 
implement, and test big data-
oriented analytics, visualization, 
computing, networking, workflow, 
storage, and retrieval solutions

x Systems/Platforms
x Tools/Libraries
x Services
x Algorithms

x Goals: Advance sciences in various 
domains

x Tasks: Adapt, customize, and refine 
application-specific solutions

x Transportation
x Solar-Terrestrial
x Brain injury
x Physics
x Healthcare
x Business
x Smart city
x etc.



Application 1: Transportation
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Big Data Challenges: 
• Standardization of data format 
• Accurate modeling
• Clustering and classifying
• Integrating data from independent sources
• Uncovering patterns, correlation, etc.
• Interpretation



Application 2: Solar Terrestrial Research

BBSO: 6000 GB/day

OVSA: 50 GB/day
Van Allen Probes: 
2GB/day

PEDC/Antarctic:  0.5 GB/day

Jeffer Lidar

SWRL: 10 GB/day

Other: 0.25 GB/day

Big Data Challenges:
• Complex Process: Plasma Physics + Fluid Dynamics
• Expensive Equipment: Remote Sensing/Instrumentation
• Data Reduction and Inversion
• Modeling (?)



Blunt Injury-most prevalent
Blunt Impacts>> MVA, fall, sports injury

CONCUSSION

Ballistic (bullet) Blast (military)

Application 3: Brain Injury Research



Introduction
• Supercomputing for big-data science

Astrophysics
Computational biology

Climate research

Flow dynamics

Computational materials
Fusion simulation

Neutron sciences

Nanoscience



Networking for Big-data Applications
• Networking requirements

– High bandwidth
• Multiples of 10Gbps to terabits networking
• Support bulk data transfer

– Stable bandwidth
• 100s of Mbps
• Support interactive control and steering operations

• Limitations of the Internet
– Only backbone has high bandwidths (last mile)
– Complicated dynamics

• Packet-level resource sharing
• Best-effort IP routing

– TCP: hard to sustain 10s Gbps or to stabilize
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High-performance Networks
• Provision dedicated channels

– UltraScience Net
– ESnet OSCARS

• Offers MPLS tunnels and VLAN virtual circuits

– Internet2 ION
• Offers MPLS tunnels and VLAN virtual circuits

– UCLP
• User Controlled Light Paths

– CHEETAH
• Circuit-switched High-speed End-to-End Transport Architecture

– DRAGON
• Dynamic Resource Allocation via GMPLS Optical Networks
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UltraScience Net – In a Nutshell
• Experimental Network Research Testbed
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Big Data Transfer in Wireless Networks

5G quotes 300 Mb/s of downlink, 
50 Mb/s of uplink, an end-to-end 
latency of 10 milliseconds.

6G enables a peak rate of 1,000 
Gb/s and air latency less than 
1,000 microseconds. 

[1] F. Guo and et al. 2021. Enabling Massive IoT Toward 6G: A Comprehensive Survey. Internet of Things Journal.
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Terascale Supernova Initiative (TSI)

Visualization channel

Visualization control channel
Computation steering channel

• Collaborative project
- Supernova explosion

• TSI simulation
- 1 terabyte a day with a small 

portion of parameters
- From TSI to PSI to ESI

• Transfer to remote sites
- Interactive distributed 

visualization
- Collaborative data analysis
- Computation monitoring
- Computation steering

Supercomputer or ClusterClient
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Reserve Ahead, but How Much?

Bandwidth reservation requires performance 
modeling and throughput prediction to avoid over-
provisioning and under-provisioning!



Throughput performance of big data transfer is affected by 
many factors:

1. End host configuration
• CPU frequency
• Number of processors

2. Network connection properties
• Bandwidth
• RTT
• Loss rate

3. Data transfer methods and corresponding control parameters
• Packet size
• Block size
• Buffer size
• Number of streams

Impact Factors in Big Data Transfer



Conduct exploratory analysis 
of a subset of 
hyperparameters, including:

• Packet size
• Buffer size
• Block size
• Number of parallel streams
• Protocol type
• Connection delay
• End-host settings

Exploratory Analysis 



Network Infrastructures for Big Data 
Transfer Experiments

UM-Local & NJIT Local:

ORNL-EmulatedANL-UCUC-Local



Intuitive analysis:

• A larger packet size 
benefits the performance 
since it carries more per-
packet user payload and 
reduces per-packet 
processing overhead. 

Expected Trace

Effects of Packet Size on Throughput Performance



Effects of Packet Size on UDT performance

Observations:
• When other parameters such as buffer size are fixed, the performance 

almost linearly increases with packet size, but at a lower speed when 
buffer size is sufficiently large.



Effects of Packet Size on TCP performance

Observations:
• The increasing pattern of performance is also consistent when using 

other transfer protocols such as the widely used TCP.



Effects of Buffer Size on Throughput performance

Intuitive analysis:

• A buffer size no less than the 
Bandwidth-Delay Product (BDP) is 
required to saturate the connection 
capacity.

• The peak achievable performance 
𝑦∗ is lower than the overall peak 
achievable performance and is 
limited by other factors.

Expected Trace



Effects of Buffer Size on UDT performance

Observations:
• In the region where buffer size is relatively small (e.g., less than BDP), 

the performance almost linearly increases as buffer size increases. 

• As buffer size increases up to around the BDP, other factors start to 
impose further limitation on the performance.



Effects of Buffer Size on TCP performance

Observations:
• TCP and UDT behave similarly, and the performance almost linearly 

increases as buffer size increases.

• The slope of the linear increase depends on end host configurations 
and network properties.



Effects of Block Size on UDT Performance

Observations:
• UDT performance increases with block size given a sufficiently large 

buffer. 

• After the block size reaches a certain point, the improvement brought by 
enlarging data block becomes marginal, and then stabilizes at a peak. 



Effects of Block Size on TCP performance

Observations:
• TCP performance is not significantly affected by block size, and the 

stabilized performance is mainly determined by other factors such as 
buffer size 



Effects of Stream Count on UDT performance

Observations:
• The UDT performance is expected to be insensitive to the number of 

streams since it is not designed for environments with high 
concurrency. 



Effects of Stream Count on TCP Performance

Observations:
• Single-stream TCP achieves near-capacity throughput over 

connections of short RTTs.

• The throughput suffers over long-haul connections, where using 
multiple streams helps achieve higher performance. 



Effects of Stream Count on TCP Performance

Observations:
• Increasing the number of streams may decrease performance (due to 

extra overhead incurred by multiple streams) after achieving the peak 
performance. 



Effects of RTT on UDT performance

Observations:
• UDT-based data transfer requires certain tuning efforts to achieve good 

performance since the default settings typically do not achieve satisfactory 
performance especially over connections with long RTTs (e.g., > 90 ms).

• UDT is not as sensitive to RTTs as TCP due to its Decreasing Additive Increase 
and Multiplicative Decrease (DAIMD) rate control algorithm. 



Effects of RTT on TCP performance

Observations:
• The throughput generally decreases (especially with a single stream) as RTT 

increases.
• UDT is more stable than TCP across different RTTs.
• TCP outperforms UDT for short RTTs but fails to keep up with UDT for mid-range and 

long RTTs 



Effects of End-host on Throughput Performance

Observations:
• For high-speed data transfer in HPNs, it is important to ensure that both 

ends can keep up with the speed of incoming/outgoing traffics. 

• Together with network properties, it impose an upper bound on the 
achievable throughput using different transport methods. 



Effects of End-host on Throughput Performance

Observations:
• Similar or identical connections between different end hosts may result in 

very different maximal performance achievable by “near-exhaustive” 
performance tuning.

Maximal achievable performance of UDT over emulated connections 



Extensive Transport Profiling

• Extensive data transfer tests
– Various protocols and toolkits

• Iperf2/3, FastProf, etc.
• TCP and its variants, UDP, UDT[#], etc.

– Different network environments
• Back-to-back connecting two workstations
• Physical network between 2 institutions with a total of 5 VMs
• Local connection between two VMs in the same institution
• Emulated network in an institution with a total of 4 VMs
• Long-haul (380ms) WAN from ANL – UChicago

[2] Y. Gu and R. L. Grossman. 2007. UDT: UDP-based data transfer for high-speed wide area networks. Computer Networks.



Dataset Description

1. Each data transfer test 
typically takes time on the 
order of minutes to 
complete.

2. The entire dataset consists 
of total 109,683 tabular data 
records, 30,433 of which are 
performance measurements 
of TCP tests, and the rest 
(79,250 records) are 
performance measurements 
of UDT tests. 



Motivations for Using Machine Learning
• It is extremely hard derive an analytical form to 

describe the relationship between throughput and 
control parameters
– Dynamic host/network environments
– Numerous hyperparameters to consider
– Complex behaviors of transfer protocols and methods

• We use machine learning to understand the 
behaviors of big data transfer and predict maximal 
achievable performance
– Critical for the reservation of resources (bandwidths) that are 

actually needed (to avoid under or overprovisioning) in 
HPNs.



Throughput Performance Prediction

Note: x-axis is the absolute percentage error (APE),  y-axis is the Empirical Cumulative 
Distribution Function (ECDF).

A predictor using a 
regression model
• Support Vector Regression (SVR)
• Fine tuned using the k-fold cross 

validation approach

The predictor achieves 10% APE 
roughly among 70% to 80% of all 
test cases for both TCP and UDT on 
ORNL-E and NJIT-Local testbed. 

About 10% APE is achieved around 
50% of the time for ANL-UC.



Latent Effects on Throughput Performance

Latent effects are significant in the TCP measurements of the same set of data 
transfer tests conducted on a production HPN (ANL-UC), where the hosts are 
simultaneously shared by many users.



Unexpected Observations
• Latent factors

– System dynamics due to multi-user 
resource sharing, unknown 
competing loads, etc.

• The large number of abnormal data 
points complicates the underlying 
pattern, which is hard to learn by 
machine learning models.

• We conduct an additional 
“preprocessing” step before 
learning.



Eliminate Latent Effects

• Eliminate latent affects using a 
simple threshold-based method
Ø If there are multiple measurements 

for a given vector of control 
parameters, those with a 
performance 𝑦% below 𝜏 · max {𝑦%}
are discarded.

• This method may exclude an 
excessively large number of 
data points.

The pattern 
of maximum 
achievable 
throughput 
performance



Different Clustering Methods for Abnormalcy Removal

Density based spatial clustering of applications with noises (DBSCAN)

K-means GMM

Spectral clustering DBSCAN

“Abnormalcy” removal:



Performance Improvement by Eliminating Latent Effects

Prediction accuracy is significantly improved, and the 15% percentile of 
APE is increased to 77% (a 20%+ improvement).



SVR-based Performance Predictor
With a Customized Loss Function

A customized loss function motivated by the 
domain knowledge of HPN management:
• the reserved bandwidth over a dedicated 

connection should meet the bandwidth 
requirement of a data transfer request 
with minimal waste.



More Performance Metrics for Evaluation

Evaluation Metrics:

• Root Mean Square Error (RMSE)

• Mean Absolute Error (MAE)

• Custom Mean Absolute Percentage Error (CMAPE)
1
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• Effective Prediction Percentage (EPP):



Comparison of the ratio of effective prediction using SVR 
with and without loss function customization: customized 
loss always performs better.

Experimental Results



Experimental Results

SVR and RFR perform roughly equally well: 10% of APE is achieved for 70% of the 
cases among all tests considered.



Theoretical Analysis

• Throughput:
– The expected throughput performance 𝑦! of a big data transfer 

during time interval [0, ∆T] is given by 

where 𝑦! 𝒙! , 𝒖! , 𝑡 is the throughput at time point 𝑡 in response 
to a specific feature vector 𝒙! and latent variables 𝒖!.



Throughput Estimates
The throughput 𝑦 𝒙 is a random quantity with a 
complex distribution 𝑃*(𝒙) as it depends on many 
factors including:

i) End host system configurations and dynamics. 

ii) Network connection properties and randomness.

iii) Data transfer applications and their underlying 
protocols (control parameter values, congestion 
control mechanisms, etc.).

Throughput profile and time traces of 
Scalable-TCP [1]

1. N. Rao, Q. Liu. S. Sen, D. Towlsey,  G. Vardoyan, R. Kettimuthu and I. Foster. (2017). TCP Throughput Profiles Using Measurements 
Over Dedicated Connections. The International ACM Symposium on High-Performance Parallel and Distributed Computing. 



Confidence Estimates
The statistical significance of estimated throughput:

Expected throughput:  

where  𝜬*(𝒙) is a complex distribution depending on many factors.

Estimated from profile: 

We show that                 is indeed a good estimate of                 .



Confidence Estimates

Consider an estimate g(4) of 8𝑦(𝒙) based on performance measurements from a class  
ℱ of unimodal functions bounded in [0,B], i.e., 0 ≤ g ≤ B, g ∈ ℱ.

The expected quadratic loss: 

The best estimator: 

Confidence:

where 𝐿 is a positive Lipschitz constant and n is the number of records. 

Decay faster



Conclusion
• Many applications require the transfer of big data 

through bandwidth reservation in high-
performance networks.

• Bandwidth reservation requires performance 
modeling and prediction.

• The performance of big data transfer is 
dependent on many factors at the host, network, 
and application levels.

• Machine learning seems to be an effective 
approach to model and predict the performance 
of big data transfer.



Thanks!
Questions?


